Back to Search
Start Over
Photonic-Radar Based Multiple-Target Tracking Under Complex Traffic-Environments
- Source :
- IEEE Access, Vol 8, Pp 225845-225856 (2020)
- Publication Year :
- 2020
- Publisher :
- IEEE, 2020.
-
Abstract
- Recent developments in the state-of-the-art Intelligent Transportation Systems enable autonomous vehicles to offer significant safety services to take appropriate and prompt actions to avoid any probable unfortunate road-hazard. As the utmost functions of the advanced driving assistance system-equipped autonomous vehicles governed by the equipped radar, therefore, the radar system should have the ability to track multiple-targets accurately with high radar-resolutions. Unlike the microwave-radar, the photonic-radar comes out as an attractive candidate owing to provide wide-spectra to attain improved and precise radar-resolutions at low-power requirements along with extended target-range even under severe atmospheric fluctuations. Therefore, a linear frequency-modulated continuous-wave photonic-radar is developed in this work to carry out a radar cross-section-based tracking of multiple mobile-targets in the presence of fog, cloud, and rain. Besides it, some complex real-time traffic-scenarios consisting of multiple mobile-targets make the target-detection, data-association, and classification processes more complicated. Therefore, this work is tested for different multiple-mobile targets in different complicated traffic-scenarios modeled by using MATLABâ„¢ software. The performance of the demonstrated photonic-radar is assessed through the power spectral density and range-Doppler mapping measurements. Furthermore, a comparison of the developed photonic-radar is also established with conventional microwave-radar to present a comparative analysis.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.697ade214f3048d2baa0afb89a6a4a50
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2020.3045055