Back to Search
Start Over
Fabrication of a Hydrogenated Amorphous Silicon Detector in 3-D Geometry and Preliminary Test on Planar Prototypes
- Source :
- Instruments, Vol 5, Iss 4, p 32 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Hydrogenated amorphous silicon (a-Si:H) can be produced by plasma-enhanced chemical vapor deposition (PECVD) of SiH4 (silane) mixed with hydrogen. The resulting material shows outstanding radiation hardness properties and can be deposited on a wide variety of substrates. Devices employing a-Si:H technologies have been used to detect many different kinds of radiation, namely, minimum ionizing particles (MIPs), X-rays, neutrons, and ions, as well as low-energy protons and alphas. However, the detection of MIPs using planar a-Si:H diodes has proven difficult due to their unsatisfactory S/N ratio arising from a combination of high leakage current, high capacitance, and limited charge collection efficiency (50% at best for a 30 µm planar diode). To overcome these limitations, the 3D-SiAm collaboration proposes employing a 3D detector geometry. The use of vertical electrodes allows for a small collection distance to be maintained while preserving a large detector thickness for charge generation. The depletion voltage in this configuration can be kept below 400 V with a consequent reduction in the leakage current. In this paper, following a detailed description of the fabrication process, the results of the tests performed on the planar p-i-n structures made with ion implantation of the dopants and with carrier selective contacts are illustrated.
Details
- Language :
- English
- ISSN :
- 2410390X
- Volume :
- 5
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Instruments
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.694fdaa10eb94af8930405816cf17b58
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/instruments5040032