Back to Search Start Over

Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbalance

Authors :
Tri-Long Nguyen
Gary S. Collins
Jessica Spence
Jean-Pierre Daurès
P. J. Devereaux
Paul Landais
Yannick Le Manach
Source :
BMC Medical Research Methodology, Vol 17, Iss 1, Pp 1-8 (2017)
Publication Year :
2017
Publisher :
BMC, 2017.

Abstract

Abstract Background Double-adjustment can be used to remove confounding if imbalance exists after propensity score (PS) matching. However, it is not always possible to include all covariates in adjustment. We aimed to find the optimal imbalance threshold for entering covariates into regression. Methods We conducted a series of Monte Carlo simulations on virtual populations of 5,000 subjects. We performed PS 1:1 nearest-neighbor matching on each sample. We calculated standardized mean differences across groups to detect any remaining imbalance in the matched samples. We examined 25 thresholds (from 0.01 to 0.25, stepwise 0.01) for considering residual imbalance. The treatment effect was estimated using logistic regression that contained only those covariates considered to be unbalanced by these thresholds. Results We showed that regression adjustment could dramatically remove residual confounding bias when it included all of the covariates with a standardized difference greater than 0.10. The additional benefit was negligible when we also adjusted for covariates with less imbalance. We found that the mean squared error of the estimates was minimized under the same conditions. Conclusion If covariate balance is not achieved, we recommend reiterating PS modeling until standardized differences below 0.10 are achieved on most covariates. In case of remaining imbalance, a double adjustment might be worth considering.

Details

Language :
English
ISSN :
14712288
Volume :
17
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Medical Research Methodology
Publication Type :
Academic Journal
Accession number :
edsdoj.691dc87914024452a5b3abf5dcf47047
Document Type :
article
Full Text :
https://doi.org/10.1186/s12874-017-0338-0