Back to Search Start Over

A screening method for plastic-degrading fungi

Authors :
Anja Černoša
Antonio Martínez Cortizas
Mohamed Traoré
Matejka Podlogar
Tjaša Danevčič
Nina Gunde-Cimerman
Cene Gostinčar
Source :
Heliyon, Vol 10, Iss 10, Pp e31130- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

The growing amount of plastic waste requires new ways of disposal or recycling. Research into the biodegradation of recalcitrant plastic polymers is gathering pace. Despite some progress, these efforts have not yet led to technologically and economically viable applications. In this study, we show that respirometric screening of environmental fungal isolates in combination with scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy can be used to identify new strains with the potential for the degradation of plastic polymers. We screened 146 fungal strains, 71 isolated from car repair shops, an environment rich in long-chain hydrocarbons, and 75 isolated from hypersaline water capable of growing at high concentrations of NaCl. When grown in a minimal medium with no carbon source, some strains produced significantly more CO2 when a pure plastic polymer was added to the medium, some only at high salinity. A selection of these strains was shown by FTIR and Raman spectroscopy to alter the properties of plastic polymers: Cladosporium sp. EXF-13502 on polyamide, Rhodotorula dairenensis EXF-13500 on polypropylene, Rhodotorula sp. EXF-10630 on low-density polyethylene and Wickerhamomyces anomalus EXF-6848 on polyethylene terephthalate. Respirometry in combination with specific spectroscopic methods is an efficient method for screening microorganisms capable of at least partial plastic degradation and can be used to expand the repertoire of potential plastic degraders. This is of particular importance as our results also show that individual strains are only active against certain polymers and under certain conditions. Therefore, efficient biodegradation of plastics is likely to depend on a collection of specialized microorganisms rather than a single universal plastic degrader.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.6916abba3e74d78ba0280dcb9c260e4
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e31130