Back to Search Start Over

Swimmer's itch control: Timely waterfowl brood relocation significantly reduces an avian schistosome population and human cases on recreational lakes.

Authors :
Curtis L Blankespoor
Harvey D Blankespoor
Randall J DeJong
Source :
PLoS ONE, Vol 19, Iss 2, p e0288948 (2024)
Publication Year :
2024
Publisher :
Public Library of Science (PLoS), 2024.

Abstract

Swimmer's itch (SI) is a dermatitis in humans caused by cercariae of avian and mammalian schistosomes which emerge from infected snails on a daily basis. Mitigation methods for SI have long been sought with little success. Copper sulfate application to the water to kill the snail hosts is the historically employed method, but is localized, temporary, and harmful to many aquatic species. Here, we test an alternative method to control Trichobilharzia stagnicolae, a species well-known to cause SI in northern Michigan and elsewhere in North America. Summer relocation of broods of the only known vertebrate host, common merganser (Mergus merganser), greatly reduced snail infection prevalence the following year on two large, geographically separated lakes in northern Michigan. Subsequent years of host relocation achieved and maintained snail infection prevalence at ~0.05%, more than an order of magnitude lower than pre-intervention. A Before-After-Control-Intervention (BACI) study design using multiple-year snail infection data from two intervention lakes and three control lakes demonstrates that dramatic lake-wide reduction of an avian schistosome can be achieved and is not due to natural fluctuations in the parasite populations. The relevance of reducing snail infection prevalence is demonstrated by a large seven-year data set of SI incidence in swimmers at a high-use beach, which showed a substantial reduction in SI cases in two successive years after relocation began. In addition, data from another Michigan lake where vertebrate-host based intervention occurred in the 1980's are analyzed statistically and show a remarkably similar pattern of reduction in snail infection prevalence. Together, these results demonstrate a highly effective SI mitigation strategy that avoids the use of environmentally suspect chemicals and removes incentive for lethal host removal. Biologically, the results strongly suggest that T. stagnicolae is reliant on the yearly hatch of ducklings to maintain populations at high levels on a lake and that the role of migratory hosts in the spring and fall is much less significant.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
19
Issue :
2
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.68cb0c41f6ca44c2ba147bb7bfdde94c
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0288948&type=printable