Back to Search Start Over

Research on Fault Prediction Method for Electric Multiple Unit Gearbox Based on Gated Recurrent Unit–Hidden Markov Model

Authors :
Cheng Liu
Shengfang Zhang
Ziguang Wang
Fujian Ma
Zhihua Sha
Source :
Applied Sciences, Vol 14, Iss 12, p 5320 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Due to the limited availability of fault samples and the expensive nature of marking fault samples in Electric Multiple Unit (EMU) gearbox monitoring data, a study was conducted to simulate the degradation process of key components in the CRH5 gearbox using rigid–flexible coupling dynamics. Vibration acceleration data from the simulation were utilized to create a six-dimensional hybrid feature domain representing the degradation process. By leveraging the capabilities of the Hidden Markov Model (HMM) for handling hidden transitive probabilities in temporal data and Gated Recurrent Unit (GRU) for addressing long-distance and high-dependence temporal data, a GRU-HMM fault prediction model was developed. This model was validated using monitoring data and the six-dimensional hybrid feature domain from the CRH5 gearbox and compared against actual maintenance records. The findings indicated that the GRU-HMM fault prediction model can effectively recognize the degradation patterns of multiple components, offering higher accuracy in fault prediction compared to traditional models. These research outcomes are expected to optimize EMU maintenance schedules based on usage conditions, enhance EMU utilization rates, and reduce operational and maintenance costs, thereby providing valuable theoretical support.

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.689b7543c68042aaa1544f5524d5df3e
Document Type :
article
Full Text :
https://doi.org/10.3390/app14125320