Back to Search Start Over

Direct Visualization of the Evolution of a Single‐Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon Dissolution

Authors :
Luyao Zhang
Yanyan Li
Lei Zhang
Kun Wang
Yingbo Li
Lei Wang
Xinyu Zhang
Feng Yang
Zhiping Zheng
Source :
Advanced Science, Vol 9, Iss 20, Pp n/a-n/a (2022)
Publication Year :
2022
Publisher :
Wiley, 2022.

Abstract

Abstract Transition metal single‐atom catalysts (SACs) are of immense interest, but how exactly they are evolved upon pyrolysis of the corresponding precursors remains unclear as transition metal ions in the complex precursor undergo a series of morphological changes accompanied with changes in oxidation state as a result of the interactions with the carbon support. Herein, the authors record the complete evolution process of Co SAC during the pyrolysis a Co/Zn‐containing zeolitic imidazolate framework. Aberration‐corrected environmental TEM coupled with in‐situ EELS is used for direct visualization of the evolution process at 200–1000 °C. Dissolution of carbon into the nanoparticles of Co is found to be key to modulating the wetting behavior of nanoparticles on the carbon support; melting of Co nanoparticles and their motion within the zeolitic architecture leads to the etching of the framework structure, yielding porous C/N support onto which Co‐single atoms reside. This uniquely structured Co SAC is found to be effective for the oxidation of a series of aromatic alkanes to produce selective ketones among other possible products. The carbon dissolution and melting/sublimation‐driven structural dynamics of transition metal revealed here will expand the methodology in synthesizing SACs and other high‐temperature processes.

Details

Language :
English
ISSN :
21983844
Volume :
9
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.686b18286aee491a9882ffbd5efbd383
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202200592