Back to Search Start Over

Systematic Effectiveness Assessment Methodology for Fault Current Indicators Deployed in Distribution Systems

Authors :
Jen-Hao Teng
Chia-Hung Hsieh
Shang-Wen Luan
Bo-Ren Lan
Yun-Fang Li
Source :
Energies, Vol 11, Iss 10, p 2582 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

Fault Current Indicators (FCIs) with communication interfaces have been widely used in distribution systems to reduce fault-finding time. The effectiveness of a Fault Management System (FMS) composed of FCIs greatly depends on the performance of the communication network deployed by the FCIs and the failure rates of distribution systems. The conventional techniques only focus on the issues of optimal number and location of FCIs or communication network deployment individually; therefore, the effectiveness of an FMS cannot be assessed realistically. A systematic effectiveness assessment methodology for FMS considering the performance of the communication network deployed by the FCIs and the failure rates of distribution systems is vital and is investigated in this paper. A communication evaluation platform is designed in this paper and used to acquire the field measurements of communication parameters. The communication parameters, especially the Packet Success Rate (PSR), between two adjacent FCIs are measured, and the Probability Density Function (PDF) of the PSR can be built accordingly. The effectiveness of the FMS is then assessed by stochastic analysis considering the failure rates of the distribution system and PSR PDFs between two adjacent FCIs. Due to the characteristics of easy installation, maintenance, longer battery life, lower cost, and so on of ZigBee, the ZigBee-based FCI is mainly discussed in this paper. In order to efficiently find the communication route when a fault occurs, a fast communication route tracking method is also proposed in this paper and its feasibility is demonstrated in an actual distribution system. Experimental and simulation results demonstrate the validity of the proposed systematic effectiveness assessment methodology for an FMS composed of FCIs. The proposed assessment methodology can more realistically react to the actual conditions of the FMS and therefore save on installation time and costs.

Details

Language :
English
ISSN :
19961073
Volume :
11
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.681de46ca334843b4faf6bc22e8e26d
Document Type :
article
Full Text :
https://doi.org/10.3390/en11102582