Back to Search Start Over

Loss of function of GATA3 regulates FRA1 and c-FOS to activate EMT and promote mammary tumorigenesis and metastasis

Authors :
Xiong Liu
Feng Bai
Yuchan Wang
Chuying Wang
Ho Lam Chan
Chenglong Zheng
Jian Fang
Wei-Guo Zhu
Xin-Hai Pei
Source :
Cell Death and Disease, Vol 14, Iss 6, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
Nature Publishing Group, 2023.

Abstract

Abstract Basal-like breast cancers (BLBCs) are among the most aggressive cancers, partly due to their enrichment of cancer stem cells (CSCs). Breast CSCs can be generated from luminal-type cancer cells via epithelial-mesenchymal transition (EMT). GATA3 maintains luminal cell fate, and its expression is lost or reduced in BLBCs. However, deletion of Gata3 in mice or cells results in early lethality or proliferative defects. It is unknown how loss-of-function of GATA3 regulates EMT and CSCs in breast cancer. We report here that haploid loss of Gata3 in mice lacking p18Ink4c, a cell cycle inhibitor, up-regulates Fra1, an AP-1 family protein that promotes mesenchymal traits, and downregulates c-Fos, another AP-1 family protein that maintains epithelial fate, leading to activation of EMT and promotion of mammary tumor initiation and metastasis. Depletion of Gata3 in luminal tumor cells similarly regulates Fra1 and c-Fos in activation of EMT. GATA3 binds to FOSL1 (encoding FRA1) and FOS (encoding c-FOS) loci to repress FOSL1 and activate FOS transcription. Deletion of Fra1 or reconstitution of Gata3, but not reconstitution of c-Fos, in Gata3 deficient tumor cells inhibits EMT, preventing tumorigenesis and/or metastasis. In human breast cancers, GATA3 expression is negatively correlated with FRA1 and positively correlated with c-FOS. Low GATA3 and FOS, but high FOSL1, are characteristics of BLBCs. Together, these data provide the first genetic evidence indicating that loss of function of GATA3 in mammary tumor cells activates FOSL1 to promote mesenchymal traits and CSC function, while concurrently repressing FOS to lose epithelial features. We demonstrate that FRA1 is required for the activation of EMT in GATA3 deficient tumorigenesis and metastasis.

Subjects

Subjects :
Cytology
QH573-671

Details

Language :
English
ISSN :
20414889
Volume :
14
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Cell Death and Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.6814b8ce70944158caaf0056516fb9b
Document Type :
article
Full Text :
https://doi.org/10.1038/s41419-023-05888-9