Back to Search Start Over

Salvia miltiorrhiza in osteoporosis: a review of its phytochemistry, traditional clinical uses and preclinical studies (2014–2024)

Authors :
Lili Wang
Shan Wang
Xuan Dai
Gaiyue Yue
Jiyuan Yin
Tianshu Xu
Hanfen Shi
Tianyuan Liu
Zhanhong Jia
Dieter Brömme
Shuofeng Zhang
Dongwei Zhang
Source :
Frontiers in Pharmacology, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Osteoporosis becomes a global public health concern due to its rising prevalence and substantial impact on life quality. Salvia miltiorrhiza Bunge (Salviae Miltiorrhizae Radix et Rhizoma, SM) has been firstly recorded in Shen Nong’s Herbal Classic, and is frequently prescribed in conjunction with other herbs for the management of osteoporosis. This systematic review aims to comprehensively analyze the recent advances of SM on osteoporosis in traditional Chinese clinical uses and preclinical investigations. Literature encompassing pertinent studies were systematically retrieved across multiple databases, including the PubMed, Web of Science, Chinese National Knowledge Infrastructure, Chinese VIP Database, and Chinese Biomedical Literature Database. Original investigations spanning from February 2014 to March 2024, including traditional Chinese medicine (TCM) clinical trials and preclinical studies, were employed to analyze the effects and actions of SM on osteoporosis. Thirty-eight TCM clinical trials were identified to employ SM in combination with other herbs for the management of primary and secondary osteoporosis. The overall efficacy was between 77% and 96.67%. Forty preclinical studies were identified to investigate the effects and actions of SM and/or its ingredients on osteoporosis. The anti-osteoporosis actions of this herb may be attributed to inhibit osteoclastogenesis/bone resorption and promote osteoblastogenesis/osteogenesis. The ethanol extracts and its ingredients (tanshinones) inhibit osteoclastogenesis/bone resorption by inhibiting the MAPK/NF-κB/NFATc1 signaling pathway and cathepsin K-induced collagen degradation. Both ethanol extracts (tanshinones) and water extracts (Sal B and tanshinol) contribute to osteoblastogenesis by promoting osteogenesis and angiogenesis via activation of the Wnt/β-catenin/VEGF and ERK/TAZ pathways, and eliminating ROS production targeting Nrf2/ARE/HO-1 pathway. In conclusions, SM may offer a novel strategy for osteoporosis management. Well-designed clinical trials are still needed to evaluate the actions of this herb and its ingredients on bone remodeling.

Details

Language :
English
ISSN :
16639812
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Pharmacology
Publication Type :
Academic Journal
Accession number :
edsdoj.67fef2a76ed342029a76991d8b62361e
Document Type :
article
Full Text :
https://doi.org/10.3389/fphar.2024.1483431