Back to Search Start Over

Tracking SARS-CoV-2 Omicron lineages using real-time reverse transcriptase PCR assays and prospective comparison with genome sequencing

Authors :
Nathan Zelyas
Kanti Pabbaraju
Matthew A. Croxen
Tarah Lynch
Emily McCullough
Stephanie A. Murphy
Sandy Shokoples
Anita Wong
Jamil N. Kanji
Graham Tipples
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Omicron has become the dominant SARS-CoV-2 variant globally since December 2021, with distinct waves being associated with separate Omicron sublineages. Rapid detection of BA.1, BA.2, BA.4, and BA.5 was accomplished in the province of Alberta, Canada, through the design and implementation of real-time reverse transcriptase PCR assays targeting S:N501Y, S:ins214EPE, S:H69/V70, ORF7b:L11F, and M:D3N. Using the combination of results for each of these markers, samples could be designated as belonging to sublineages within BA.1, BA.2, BA.4, or BA.5. The analytical sensitivity of these markers ranged from 132 to 2229 copies/mL and in-laboratory accuracy was 98.9–100%. A 97.3% agreement using 12,592 specimens was demonstrated for the assays compared to genome sequencing. The use of these assays, combined with genome sequencing, facilitated the surveillance of SARS-CoV-2 lineages throughout a BA.5-dominated period.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.67e3a24c197a41d0985cec0df6add306
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-44796-y