Back to Search Start Over

Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy

Authors :
Emily Banks
Vincent Francis
Sheng-Jia Lin
Fares Kharfallah
Vladimir Fonov
Maxime Lévesque
Chanshuai Han
Gopinath Kulasekaran
Marius Tuznik
Armin Bayati
Reem Al-Khater
Fowzan S. Alkuraya
Loukas Argyriou
Meisam Babaei
Melanie Bahlo
Behnoosh Bakhshoodeh
Eileen Barr
Lauren Bartik
Mahmoud Bassiony
Miriam Bertrand
Dominique Braun
Rebecca Buchert
Mauro Budetta
Maxime Cadieux-Dion
Daniel G. Calame
Heidi Cope
Donna Cushing
Stephanie Efthymiou
Marwa Abd Elmaksoud
Huda G. El Said
Tawfiq Froukh
Harinder K. Gill
Joseph G. Gleeson
Laura Gogoll
Elaine S.-Y. Goh
Vykuntaraju K. Gowda
Tobias B. Haack
Mais O. Hashem
Stefan Hauser
Trevor L. Hoffman
Jacob S. Hogue
Akimoto Hosokawa
Henry Houlden
Kevin Huang
Stephanie Huynh
Ehsan G. Karimiani
Silke Kaulfuß
G. Christoph Korenke
Amy Kritzer
Hane Lee
James R. Lupski
Elysa J. Marco
Kirsty McWalter
Arakel Minassian
Berge A. Minassian
David Murphy
Juanita Neira-Fresneda
Hope Northrup
Denis M. Nyaga
Barbara Oehl-Jaschkowitz
Matthew Osmond
Richard Person
Davut Pehlivan
Cassidy Petree
Lynette G. Sadleir
Carol Saunders
Ludger Schoels
Vandana Shashi
Rebecca C. Spillmann
Varunvenkat M. Srinivasan
Paria N. Torbati
Tulay Tos
Undiagnosed Diseases Network
Maha S. Zaki
Dihong Zhou
Christiane Zweier
Jean-François Trempe
Thomas M. Durcan
Ziv Gan-Or
Massimo Avoli
Cesar Alves
Gaurav K. Varshney
Reza Maroofian
David A. Rudko
Peter S. McPherson
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-22 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.67b9cc39749f4c32a8e5662c1d902770
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-51310-z