Back to Search
Start Over
Numerical study on the influence of wall temperature gradient on aerodynamic characteristics of low aspect ratio flying wing configuration
- Source :
- Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Abstract With the aim for a low-aspect-ratio flying wing configuration, this study explores the influence of wall temperature gradient on the laminar and turbulent boundary layers of aircraft surface and determines the effect on the transition Reynolds number and wall friction drag. A four-equation turbulence model with transition mode is used to numerically simulate the flow around the model. The variation of wall friction coefficient, transition Reynolds number, and turbulent boundary layer flow with wall temperature are emphatically investigated. Results show that when the wall temperature increases from 288 to 500 K, the boundary layer transition Reynolds number for the wing section increased by approximately 28% and the surface friction drags decreases by approximately 10.7%. The hot wall enhances the viscous effects of the laminar temperature boundary layer, reduces the Reynolds shear stress and turbulent kinetic energy, and increases the flow stability. However, the velocity gradient and shear stress in the bottom of the turbulent boundary layer decreases, which leads to reduced friction shear stress on the wall surface. Therefore, for the low-aspect-ratio flying wing model, the hot wall can delay the boundary layer transition and reduce the friction drag coefficient in the turbulent region.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 11
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.66e4016d41dc47bfada51f979e77cf39
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-021-94261-x