Back to Search Start Over

Prediction of Klebsiella phage-host specificity at the strain level

Authors :
Dimitri Boeckaerts
Michiel Stock
Celia Ferriol-González
Jesús Oteo-Iglesias
Rafael Sanjuán
Pilar Domingo-Calap
Bernard De Baets
Yves Briers
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Phages are increasingly considered promising alternatives to target drug-resistant bacterial pathogens. However, their often-narrow host range can make it challenging to find matching phages against bacteria of interest. Current computational tools do not accurately predict interactions at the strain level in a way that is relevant and properly evaluated for practical use. We present PhageHostLearn, a machine learning system that predicts strain-level interactions between receptor-binding proteins and bacterial receptors for Klebsiella phage-bacteria pairs. We evaluate this system both in silico and in the laboratory, in the clinically relevant setting of finding matching phages against bacterial strains. PhageHostLearn reaches a cross-validated ROC AUC of up to 81.8% in silico and maintains this performance in laboratory validation. Our approach provides a framework for developing and evaluating phage-host prediction methods that are useful in practice, which we believe to be a meaningful contribution to the machine-learning-guided development of phage therapeutics and diagnostics.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.66e3b5859f4e0190a714683a69dd26
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-48675-6