Back to Search
Start Over
Prediction of Klebsiella phage-host specificity at the strain level
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Phages are increasingly considered promising alternatives to target drug-resistant bacterial pathogens. However, their often-narrow host range can make it challenging to find matching phages against bacteria of interest. Current computational tools do not accurately predict interactions at the strain level in a way that is relevant and properly evaluated for practical use. We present PhageHostLearn, a machine learning system that predicts strain-level interactions between receptor-binding proteins and bacterial receptors for Klebsiella phage-bacteria pairs. We evaluate this system both in silico and in the laboratory, in the clinically relevant setting of finding matching phages against bacterial strains. PhageHostLearn reaches a cross-validated ROC AUC of up to 81.8% in silico and maintains this performance in laboratory validation. Our approach provides a framework for developing and evaluating phage-host prediction methods that are useful in practice, which we believe to be a meaningful contribution to the machine-learning-guided development of phage therapeutics and diagnostics.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.66e3b5859f4e0190a714683a69dd26
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-48675-6