Back to Search Start Over

TGF-β1 Suppresses Proliferation and Induces Differentiation in Human iPSC Neural in vitro Models

Authors :
Julia Izsak
Dzeneta Vizlin-Hodzic
Margarita Iljin
Joakim Strandberg
Janusz Jadasz
Thomas Olsson Bontell
Stephan Theiss
Eric Hanse
Hans Ågren
Keiko Funa
Sebastian Illes
Source :
Frontiers in Cell and Developmental Biology, Vol 8 (2020)
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

Persistent neural stem cell (NSC) proliferation is, among others, a hallmark of immaturity in human induced pluripotent stem cell (hiPSC)-based neural models. TGF-β1 is known to regulate NSCs in vivo during embryonic development in rodents. Here we examined the role of TGF-β1 as a potential candidate to promote in vitro differentiation of hiPSCs-derived NSCs and maturation of neuronal progenies. We present that TGF-β1 is specifically present in early phases of human fetal brain development. We applied confocal imaging and electrophysiological assessment in hiPSC-NSC and 3D neural in vitro models and demonstrate that TGF-β1 is a signaling protein, which specifically suppresses proliferation, enhances neuronal and glial differentiation, without effecting neuronal maturation. Moreover, we demonstrate that TGF-β1 is equally efficient in enhancing neuronal differentiation of human NSCs as an artificial synthetic small molecule. The presented approach provides a proof-of-concept to replace artificial small molecules with more physiological signaling factors, which paves the way to improve the physiological relevance of human neural developmental in vitro models.

Details

Language :
English
ISSN :
2296634X
Volume :
8
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cell and Developmental Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.66d945539ed34be099807ded70c1bc61
Document Type :
article
Full Text :
https://doi.org/10.3389/fcell.2020.571332