Back to Search Start Over

An Anti-Interference Control Method for an AGV-WPT System Based on UIO-SMC

Authors :
Jun Hou
Weidong Huang
Dongxiao Huang
Source :
World Electric Vehicle Journal, Vol 12, Iss 4, p 220 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

During the wireless charging of an automated guided vehicle (AGV), the output voltage is unstable due to changes in parameters such as coil mutual inductance and load resistance caused by external interferences and internal mismatches of the system. In this paper, an integral sliding mode control method based on an unknown input observer (UIO) containing predictive equations is designed to build an inductor–capacitor–capacitor-series (LCC-S) topology model for wireless power transfer (WPT). The observer designed by this method can perceive changes in the secondary resistance parameter and the mutual inductance of the primary and secondary coils. The design with the prediction equation speeds up the convergence of the observer to the true value. The observer’s compensation of the control system avoids the occurrence of integral oversaturation. The experimental results show that, based on the UIO-SMC system output, voltage can be accurately controlled to meet the requirement for a given voltage. The effect of suppressing disturbance is better than with SMC and PI control. When the system parameter changes, it has better voltage anti-interference performance and stronger ripple suppression.

Details

Language :
English
ISSN :
20326653
Volume :
12
Issue :
4
Database :
Directory of Open Access Journals
Journal :
World Electric Vehicle Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.66d918719f8c4d4d8be1b2fe9b7f9725
Document Type :
article
Full Text :
https://doi.org/10.3390/wevj12040220