Back to Search Start Over

Scalable deep text comprehension for Cancer surveillance on high-performance computing

Authors :
John X. Qiu
Hong-Jun Yoon
Kshitij Srivastava
Thomas P. Watson
J. Blair Christian
Arvind Ramanathan
Xiao C. Wu
Paul A. Fearn
Georgia D. Tourassi
Source :
BMC Bioinformatics, Vol 19, Iss S18, Pp 99-110 (2018)
Publication Year :
2018
Publisher :
BMC, 2018.

Abstract

Abstract Background Deep Learning (DL) has advanced the state-of-the-art capabilities in bioinformatics applications which has resulted in trends of increasingly sophisticated and computationally demanding models trained by larger and larger data sets. This vastly increased computational demand challenges the feasibility of conducting cutting-edge research. One solution is to distribute the vast computational workload across multiple computing cluster nodes with data parallelism algorithms. In this study, we used a High-Performance Computing environment and implemented the Downpour Stochastic Gradient Descent algorithm for data parallelism to train a Convolutional Neural Network (CNN) for the natural language processing task of information extraction from a massive dataset of cancer pathology reports. We evaluated the scalability improvements using data parallelism training and the Titan supercomputer at Oak Ridge Leadership Computing Facility. To evaluate scalability, we used different numbers of worker nodes and performed a set of experiments comparing the effects of different training batch sizes and optimizer functions. Results We found that Adadelta would consistently converge at a lower validation loss, though requiring over twice as many training epochs as the fastest converging optimizer, RMSProp. The Adam optimizer consistently achieved a close 2nd place minimum validation loss significantly faster; using a batch size of 16 and 32 allowed the network to converge in only 4.5 training epochs. Conclusions We demonstrated that the networked training process is scalable across multiple compute nodes communicating with message passing interface while achieving higher classification accuracy compared to a traditional machine learning algorithm.

Details

Language :
English
ISSN :
14712105
Volume :
19
Issue :
S18
Database :
Directory of Open Access Journals
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
edsdoj.6684208320a84967842d0cd01bbb996c
Document Type :
article
Full Text :
https://doi.org/10.1186/s12859-018-2511-9