Back to Search Start Over

20(S)-Protopanaxadiol Inhibits Titanium Particle-Induced Inflammatory Osteolysis and RANKL-Mediated Osteoclastogenesis via MAPK and NF-κB Signaling Pathways

Authors :
Chenhao Pan
Haojie Shan
Tianyi Wu
Wei Liu
Yiwei Lin
Wenyang Xia
Feng Wang
Zubin Zhou
Xiaowei Yu
Source :
Frontiers in Pharmacology, Vol 9 (2019)
Publication Year :
2019
Publisher :
Frontiers Media S.A., 2019.

Abstract

Osteolysis is a principal reason for arthroplasty failure like aseptic loosening induced by Titanium (Ti) particle. It is a challenge for orthopedic surgeons. Recent researches show that 20(S)-protopanaxadiol can inhibit inflammatory cytokine release in vitro. This study aims to assess the effect of 20(S)-protopanaxadiol on Ti particle-induced osteolysis and RANKL-mediated osteoclastogenesis. Micro-CT and histological analysis in vivo indicated the inhibitory effects of 20(S)-protopanaxadiol on osteoclastogenesis and the excretion of inflammatory cytokines. Next, we demonstrated that 20(S)-protopanaxadiol inhibited osteoclast differentiation, bone resorption area, and F-actin ring formation in a dose-dependent manner. Moreover, mechanistic studies suggested that the suppression of MAPK and NF-κB signaling pathways were found to mediate the inhibitory effects of 20(S)-protopanaxadiol. In conclusion, 20(S)-protopanaxadiol may suppress osteoclastogenesis in a dose- dependent manner and it could be a potential treatment of Ti particle-induced osteolysis.

Details

Language :
English
ISSN :
16639812
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Pharmacology
Publication Type :
Academic Journal
Accession number :
edsdoj.6673b776ffe4391bf77f33d67277a2d
Document Type :
article
Full Text :
https://doi.org/10.3389/fphar.2018.01538