Back to Search Start Over

Existence of critical elliptic systems with boundary singularities

Authors :
Jianfu Yang
Yimin Zhou
Source :
Opuscula Mathematica, Vol 33, Iss 2, Pp 373-390 (2013)
Publication Year :
2013
Publisher :
AGH Univeristy of Science and Technology Press, 2013.

Abstract

In this paper, we are concerned with the existence of positive solutions of the following nonlinear elliptic system involving critical Hardy-Sobolev exponent \begin{equation*}\label{eq:1}(*) \left\{ \begin{array}{lll} -\Delta u= \frac{2\alpha}{\alpha+\beta}\frac{u^{\alpha-1}v^\beta}{|x|^s}-\lambda u^p, & \quad {\rm in}\quad \Omega,\\[2mm] -\Delta v= \frac{2\beta}{\alpha+\beta}\frac{u^\alpha v^{\beta-1}}{|x|^s}-\lambda v^p, & \quad {\rm in}\quad \Omega,\\[2mm] u\gt 0, v\gt 0, &\quad {\rm in}\quad \Omega,\\[2mm] u=v=0, &\quad {\rm on}\quad \partial\Omega, \end{array} \right. \end{equation*} where \(N\geq 4\) and \(\Omega\) is a \(C^1\) bounded domain in \(\mathbb{R}^N\) with \(0\in\partial\Omega\). \(0\lt s \lt 2\), \(\alpha+\beta=2^*(s)=\frac{2(N-s)}{N-2}\), \(\alpha,\beta\gt 1\), \(\lambda\gt 0\) and \(1 \lt p\lt \frac{N+2}{N-2}\). The case when 0 belongs to the boundary of \(\Omega\) is closely related to the mean curvature at the origin on the boundary. We show in this paper that problem \((*)\) possesses at least a positive solution.

Details

Language :
English
ISSN :
12329274
Volume :
33
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Opuscula Mathematica
Publication Type :
Academic Journal
Accession number :
edsdoj.66442e88b64cb6994c603cf4ac1ec0
Document Type :
article
Full Text :
https://doi.org/10.7494/OpMath.2013.33.2.373