Back to Search Start Over

Large-scale Vietnamese point-of-interest classification using weak labeling

Authors :
Van Trung Tran
Quang Dao Le
Bao Son Pham
Viet Hung Luu
Quang Hung Bui
Source :
Frontiers in Artificial Intelligence, Vol 5 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Point-of-Interests (POIs) represent geographic location by different categories (e.g., touristic places, amenities, or shops) and play a prominent role in several location-based applications. However, the majority of POIs category labels are crowd-sourced by the community, thus often of low quality. In this paper, we introduce the first annotated dataset for the POIs categorical classification task in Vietnamese. A total of 750,000 POIs are collected from WeMap, a Vietnamese digital map. Large-scale hand-labeling is inherently time-consuming and labor-intensive, thus we have proposed a new approach using weak labeling. As a result, our dataset covers 15 categories with 275,000 weak-labeled POIs for training, and 30,000 gold-standard POIs for testing, making it the largest compared to the existing Vietnamese POIs dataset. We empirically conduct POI categorical classification experiments using a strong baseline (BERT-based fine-tuning) on our dataset and find that our approach shows high efficiency and is applicable on a large scale. The proposed baseline gives an F1 score of 90% on the test dataset, and significantly improves the accuracy of WeMap POI data by a margin of 37% (from 56 to 93%).

Details

Language :
English
ISSN :
26248212
Volume :
5
Database :
Directory of Open Access Journals
Journal :
Frontiers in Artificial Intelligence
Publication Type :
Academic Journal
Accession number :
edsdoj.663f9cf99f4a28ae968b2fd3a5c748
Document Type :
article
Full Text :
https://doi.org/10.3389/frai.2022.1020532