Back to Search
Start Over
Design and Synthesis of Novel Symmetric Fluorene-2,7-Diamine Derivatives as Potent Hepatitis C Virus Inhibitors
- Source :
- Pharmaceuticals, Vol 14, Iss 4, p 292 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Hepatitis C virus (HCV) is an international challenge. Since the discovery of NS5A direct-acting antivirals, researchers turned their attention to pursue novel NS5A inhibitors with optimized design and structure. Herein we explore highly potent hepatitis C virus (HCV) NS5A inhibitors; the novel analogs share a common symmetrical prolinamide 2,7-diaminofluorene scaffold. Modification of the 2,7-diaminofluorene backbone included the use of (S)-prolinamide or its isostere (S,R)-piperidine-3-caboxamide, both bearing different amino acid residues with terminal carbamate groups. Compound 26 exhibited potent inhibitory activity against HCV genotype (GT) 1b (effective concentration (EC50) = 36 pM and a selectivity index of >2.78 × 106). Compound 26 showed high selectivity on GT 1b versus GT 4a. Interestingly, it showed a significant antiviral effect against GT 3a (EC50 = 1.2 nM). The structure-activity relationship (SAR) analysis revealed that picomolar inhibitory activity was attained with the use of S-prolinamide capped with R- isoleucine or R-phenylglycine residues bearing a terminal alkyl carbamate group.
Details
- Language :
- English
- ISSN :
- 14248247
- Volume :
- 14
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Pharmaceuticals
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.65fe7ec779a24dd38c9422a6d8926c33
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ph14040292