Back to Search Start Over

The Existence of Solutions for Boundary Value Problem of Fractional Functional Differential Equations with Delay

Authors :
Xu Mengrui
Li Yanan
Zhao Yige
Sun Shurong
Source :
MATEC Web of Conferences, Vol 228, p 01005 (2018)
Publication Year :
2018
Publisher :
EDP Sciences, 2018.

Abstract

A class of boundary value problem for fractional functional differential equation with delay C D σ ω ( t ) = f ( t , ω t ) , t ∈ [ 0 , ζ ] , ω ( 0 ) = 0 , ω ′ ( 0 ) = 0 , ω ″ ( ζ ) = 1 , $ \left\{ {\begin{array}{*{20}c} {^{C} D^{\sigma } \omega (t) = f(t,\omega _{t} ),t \in [0,\zeta ],} \\ {\omega (0) = 0,\,\omega ^{\prime}(0) = 0,\,\omega ^{\prime\prime}(\zeta ) = 1,} \\ \end{array} } \right. $ is studied, where 2 < σ ≤ 3 , c D σ $ 2 < \sigma \le 3,\,\,^{c} D^{\sigma } $ devote standard Caputo fractional derivative. In this article, three new criteria on existence and uniqueness of solution are obtained by Banach contraction mapping principle, Schauder fixed point theorem and nonlinear alternative theorem.

Details

Language :
English, French
ISSN :
2261236X
Volume :
228
Database :
Directory of Open Access Journals
Journal :
MATEC Web of Conferences
Publication Type :
Academic Journal
Accession number :
edsdoj.65eaa2a8da4957a783036a48abb2f5
Document Type :
article
Full Text :
https://doi.org/10.1051/matecconf/201822801005