Back to Search
Start Over
The Existence of Solutions for Boundary Value Problem of Fractional Functional Differential Equations with Delay
- Source :
- MATEC Web of Conferences, Vol 228, p 01005 (2018)
- Publication Year :
- 2018
- Publisher :
- EDP Sciences, 2018.
-
Abstract
- A class of boundary value problem for fractional functional differential equation with delay C D σ ω ( t ) = f ( t , ω t ) , t ∈ [ 0 , ζ ] , ω ( 0 ) = 0 , ω ′ ( 0 ) = 0 , ω ″ ( ζ ) = 1 , $ \left\{ {\begin{array}{*{20}c} {^{C} D^{\sigma } \omega (t) = f(t,\omega _{t} ),t \in [0,\zeta ],} \\ {\omega (0) = 0,\,\omega ^{\prime}(0) = 0,\,\omega ^{\prime\prime}(\zeta ) = 1,} \\ \end{array} } \right. $ is studied, where 2 < σ ≤ 3 , c D σ $ 2 < \sigma \le 3,\,\,^{c} D^{\sigma } $ devote standard Caputo fractional derivative. In this article, three new criteria on existence and uniqueness of solution are obtained by Banach contraction mapping principle, Schauder fixed point theorem and nonlinear alternative theorem.
- Subjects :
- Engineering (General). Civil engineering (General)
TA1-2040
Subjects
Details
- Language :
- English, French
- ISSN :
- 2261236X
- Volume :
- 228
- Database :
- Directory of Open Access Journals
- Journal :
- MATEC Web of Conferences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.65eaa2a8da4957a783036a48abb2f5
- Document Type :
- article
- Full Text :
- https://doi.org/10.1051/matecconf/201822801005