Back to Search Start Over

Unveiling the orbital texture of 1T-TiTe2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy

Authors :
Samuel Beaulieu
Michael Schüler
Jakub Schusser
Shuo Dong
Tommaso Pincelli
Julian Maklar
Alexander Neef
Friedrich Reinert
Martin Wolf
Laurenz Rettig
Ján Minár
Ralph Ernstorfer
Source :
npj Quantum Materials, Vol 6, Iss 1, Pp 1-11 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract The momentum-dependent orbital character in crystalline solids, referred to as orbital texture, is of capital importance in the emergence of symmetry-broken collective phases, such as charge density waves as well as superconducting and topological states of matter. By performing extreme ultraviolet multidimensional angle-resolved photoemission spectroscopy for two different crystal orientations linked to each other by mirror symmetry, we isolate and identify the role of orbital texture in photoemission from the transition metal dichalcogenide 1T-TiTe2. By comparing our experimental results with theoretical calculations based on both a quantitative one-step model of photoemission and an intuitive tight-binding model, we unambiguously demonstrate the link between the momentum-dependent orbital orientation and the emergence of strong intrinsic linear dichroism in the photoelectron angular distributions. Our results represent an important step towards going beyond band structure (eigenvalues) mapping and learning about electronic wavefunction and orbital texture of solids by exploiting matrix element effects in photoemission spectroscopy.

Details

Language :
English
ISSN :
23974648
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Quantum Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.6575b4462c95491b9e66c5fa944a7c4c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41535-021-00398-3