Back to Search Start Over

Identifying patient subgroups in MASLD and MASH-associated fibrosis: molecular profiles and implications for drug development

Authors :
Manuel A. González Hernández
Lars Verschuren
Martien P.M. Caspers
Martine C. Morrison
Jennifer Venhorst
Jelle T. van den Berg
Beatrice Coornaert
Roeland Hanemaaijer
Gerard J. P. van Westen
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The incidence of MASLD and MASH-associated fibrosis is rapidly increasing worldwide. Drug therapy is hampered by large patient variability and partial representation of human MASH fibrosis in preclinical models. Here, we investigated the mechanisms underlying patient heterogeneity using a discovery dataset and validated in distinct human transcriptomic datasets, to improve patient stratification and translation into subgroup specific patterns. Patient stratification was performed using weighted gene co-expression network analysis (WGCNA) in a large public transcriptomic discovery dataset (n = 216). Differential expression analysis was performed using DESeq2 to obtain differentially expressed genes (DEGs). Ingenuity Pathway analysis was used for functional annotation. The discovery dataset showed relevant fibrosis-related mechanisms representative of disease heterogeneity. Biological complexity embedded in genes signature was used to stratify discovery dataset into six subgroups of various sizes. Of note, subgroup-specific DEGs show differences in directionality in canonical pathways (e.g. Collagen biosynthesis, cytokine signaling) across subgroups. Finally, a multiclass classification model was trained and validated in two datasets. In summary, our work shows a potential alternative for patient population stratification based on heterogeneity in MASLD-MASH mechanisms. Future research is warranted to further characterize patient subgroups and identify protein targets for virtual screening and/or in vitro validation in preclinical models.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.655a3f5a3c6143cd8f62fdeaec52efc2
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-74098-w