Back to Search Start Over

The analysis of the structural parameter influences on measurement errors in a binocular 3D reconstruction system: a portable 3D system

Authors :
Ou Sha
Hongyu Zhang
Jing Bai
Yaoyu Zhang
Jianbai Yang
Source :
PeerJ Computer Science, Vol 9, p e1610 (2023)
Publication Year :
2023
Publisher :
PeerJ Inc., 2023.

Abstract

This study used an analytical model to investigate the factors that affect the reconstruction accuracy composed of the baseline length, lens focal length, the angle between the optical axis and baseline, and the field of the view angle. Firstly, the theoretical expressions of the above factors and measurement errors are derived based on the binocular three-dimensional reconstruction model. Then, the structural parameters’ impact on the error propagation coefficient is analyzed and simulated using MATLAB software. The results show that structural parameters significantly impact the error propagation coefficient, and the reasonable range of structural parameters is pointed out. When the angle between the optical axis of the binocular camera and the baseline is between 30° and 55°, the ratio of the baseline length to the focal length can be reasonably reduced. In addition, using the field angle of the view that does not exceed 20° could reduce the error propagation coefficient. While the angle between the binocular optical axis and the baseline is between 40° and 50°, the reconstruction result has the highest accuracy, changing the angle out of this range will lead to an increase in the reconstruction error. The angle between the binocular optical axis and the baseline changes 30° through 60° leads to the error propagation coefficient being in a lower range. Finally, experimental verification and simulation results show that selecting reasonable structural parameters could significantly reduce measurement errors. This study proposes a model that constructs a binocular three-dimensional reconstruction system with high precision. A portable three-dimensional reconstruction system is built in the article.

Details

Language :
English
ISSN :
23765992
Volume :
9
Database :
Directory of Open Access Journals
Journal :
PeerJ Computer Science
Publication Type :
Academic Journal
Accession number :
edsdoj.65328d432bc4d90bc888c816017ff7e
Document Type :
article
Full Text :
https://doi.org/10.7717/peerj-cs.1610