Back to Search Start Over

USF1 transcriptionally activates USP14 to drive atherosclerosis by promoting EndMT through NLRC5/Smad2/3 axis

Authors :
Zhiwen Zhang
Quan Guo
Chao Ma
Zhenzhou Zhao
Qingbo Shi
Haosen Yu
Lixin Rao
Muwei Li
Source :
Molecular Medicine, Vol 30, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Endothelial-to-Mesenchymal Transformation (EndMT) plays key roles in endothelial dysfunction during the pathological progression of atherosclerosis; however, its detailed mechanism remains unclear. Herein, we explored the biological function and mechanisms of upstream stimulating factor 1 (USF1) in EndMT during atherosclerosis. Methods The in vivo and in vitro atherosclerotic models were established in high fat diet-fed ApoE−/− mice and ox-LDL-exposed human umbilical vein endothelial cells (HUVECs). The plaque formation, collagen and lipid deposition, and morphological changes in the aortic tissues were evaluated by hematoxylin and eosin (HE), Masson, Oil red O and Verhoeff-Van Gieson (EVG) staining, respectively. EndMT was determined by expression levels of EndMT-related proteins. Target molecule expression was detected by RT-qPCR and Western blotting. The release of pro-inflammatory cytokines was measured by ELISA. Migration of HUVECs was detected by transwell and scratch assays. Molecular mechanism was investigated by dual-luciferase reporter assay, ChIP, and Co-IP assays. Results USF1 was up-regulated in atherosclerosis patients. USF1 knockdown inhibited EndMT by up-regulating CD31 and VE-Cadherin, while down-regulating α-SMA and vimentin, thereby repressing inflammation, and migration in ox-LDL-exposed HUVECs. In addition, USF1 transcriptionally activated ubiquitin-specific protease 14 (USP14), which promoted de-ubiquitination and up-regulation of NLR Family CARD Domain Containing 5 (NLRC5) and subsequent Smad2/3 pathway activation. The inhibitory effect of sh-USF1 or sh-USP14 on EndMT was partly reversed by USP14 or NLRC5 overexpression. Finally, USF1 knockdown delayed atherosclerosis progression via inhibiting EndMT in mice. Conclusion Our findings indicate the contribution of the USF1/USP14/NLRC5 axis to atherosclerosis development via promoting EndMT, which provide effective therapeutic targets.

Details

Language :
English
ISSN :
15283658
Volume :
30
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Molecular Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.640c9e826a84eb8a1c678610505ec24
Document Type :
article
Full Text :
https://doi.org/10.1186/s10020-024-00798-8