Back to Search Start Over

An evolutionary optimization of a rhodopsin-based phototrophic metabolism in Escherichia coli

Authors :
Hyun Aaron Kim
Hyun Ju Kim
Jihoon Park
Ah Reum Choi
Kyoo Heo
Haeyoung Jeong
Kwang-Hwan Jung
Yeong-Jae Seok
Pil Kim
Sang Jun Lee
Source :
Microbial Cell Factories, Vol 16, Iss 1, Pp 1-9 (2017)
Publication Year :
2017
Publisher :
BMC, 2017.

Abstract

Abstract Background The expression of the Gloeobacter rhodopsin (GR) in a chemotrophic Escherichia coli enables the light-driven phototrophic energy generation. Adaptive laboratory evolution has been used for acquiring desired phenotype of microbial cells and for the elucidation of basic mechanism of molecular evolution. To develop an optimized strain for the artificially acquired phototrophic metabolism, an ancestral E. coli expressing GR was adaptively evolved in a chemostat reactor with constant illumination and limited glucose conditions. This study was emphasized at an unexpected genomic mutation contributed to the improvement of microbial performance. Results During the chemostat culture, increase of cell size was observed, which were distinguished from that of the typical rod-shaped ancestral cells. A descendant ET5 strain was randomly isolated from the chemostat culture at 88-days. The phototrophic growth and the light-induced proton pumping of the ET5 strain were twofold and eightfold greater, respectively, than those of the ancestral E. coli strain. Single point mutation of C1082A at dgcQ gene (encoding diguanylate cyclase, also known as the yedQ gene) in the chromosome of ET5 strain was identified from whole genome sequencing analysis. An ancestral E. coli complemented with the same dgcQ mutation from the ET5 was repeated the subsequently enhancements of light-driven phototrophic growth and proton pumping. Intracellular c-di-GMP, the product of the diguanylate cyclase (dgcQ), of the descendant ET5 strain was suddenly increased while that of the ancestral strain was negligible. Conclusions Newly acquired phototrophic metabolism of E. coli was further improved via adaptive laboratory evolution by the rise of a point mutation on a transmembrane cell signaling protein followed by increase of signal molecule that eventually led an increase proton pumping and phototrophic growth.

Details

Language :
English
ISSN :
14752859
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microbial Cell Factories
Publication Type :
Academic Journal
Accession number :
edsdoj.63f73b507514799957c4e6b01d0e3c4
Document Type :
article
Full Text :
https://doi.org/10.1186/s12934-017-0725-6