Back to Search Start Over

Numerical reckoning fixed points via new faster iteration process

Authors :
Kifayat Ullah
Junaid Ahmad
Fida Muhammad Khan
Source :
Applied General Topology, Vol 23, Iss 1, Pp 213-223 (2022)
Publication Year :
2022
Publisher :
Universitat Politècnica de València, 2022.

Abstract

In this paper, we propose a new iteration process which is faster than the leading S [J. Nonlinear Convex Anal. 8, no. 1 (2007), 61-79], Thakur et al. [App. Math. Comp. 275 (2016), 147-155] and M [Filomat 32, no. 1 (2018), 187-196] iterations for numerical reckoning fixed points. Using new iteration process, some fixed point convergence results for generalized α-nonexpansive mappings in the setting of uniformly convex Banach spaces are proved. At the end of paper, we offer a numerical example to compare the rate of convergence of the proposed iteration process with the leading iteration processes.

Details

Language :
English
ISSN :
15769402 and 19894147
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Applied General Topology
Publication Type :
Academic Journal
Accession number :
edsdoj.63e6d87c2114446aabd2d49d5ad15b5f
Document Type :
article
Full Text :
https://doi.org/10.4995/agt.2022.11902