Back to Search
Start Over
Numerical reckoning fixed points via new faster iteration process
- Source :
- Applied General Topology, Vol 23, Iss 1, Pp 213-223 (2022)
- Publication Year :
- 2022
- Publisher :
- Universitat Politècnica de València, 2022.
-
Abstract
- In this paper, we propose a new iteration process which is faster than the leading S [J. Nonlinear Convex Anal. 8, no. 1 (2007), 61-79], Thakur et al. [App. Math. Comp. 275 (2016), 147-155] and M [Filomat 32, no. 1 (2018), 187-196] iterations for numerical reckoning fixed points. Using new iteration process, some fixed point convergence results for generalized α-nonexpansive mappings in the setting of uniformly convex Banach spaces are proved. At the end of paper, we offer a numerical example to compare the rate of convergence of the proposed iteration process with the leading iteration processes.
Details
- Language :
- English
- ISSN :
- 15769402 and 19894147
- Volume :
- 23
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Applied General Topology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.63e6d87c2114446aabd2d49d5ad15b5f
- Document Type :
- article
- Full Text :
- https://doi.org/10.4995/agt.2022.11902