Back to Search Start Over

Retinoic acid signaling is directly activated in cardiomyocytes and protects mouse hearts from apoptosis after myocardial infarction

Authors :
Fabio Da Silva
Fariba Jian Motamedi
Lahiru Chamara Weerasinghe Arachchige
Amelie Tison
Stephen T Bradford
Jonathan Lefebvre
Pascal Dolle
Norbert B Ghyselinck
Kay D Wagner
Andreas Schedl
Source :
eLife, Vol 10 (2021)
Publication Year :
2021
Publisher :
eLife Sciences Publications Ltd, 2021.

Abstract

Retinoic acid (RA) is an essential signaling molecule for cardiac development and plays a protective role in the heart after myocardial infarction (MI). In both cases, the effect of RA signaling on cardiomyocytes, the principle cell type of the heart, has been reported to be indirect. Here we have developed an inducible murine transgenic RA-reporter line using CreERT2 technology that permits lineage tracing of RA-responsive cells and faithfully recapitulates endogenous RA activity in multiple organs during embryonic development. Strikingly, we have observed a direct RA response in cardiomyocytes during mid-late gestation and after MI. Ablation of RA signaling through deletion of the Aldh1a1/a2/a3 genes encoding RA-synthesizing enzymes leads to increased cardiomyocyte apoptosis in adults subjected to MI. RNA sequencing analysis reveals Tgm2 and Ace1, two genes with well-established links to cardiac repair, as potential targets of RA signaling in primary cardiomyocytes, thereby providing novel links between the RA pathway and heart disease.

Details

Language :
English
ISSN :
2050084X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
edsdoj.63c203ebcf0d472caf745a6f7dfa85c5
Document Type :
article
Full Text :
https://doi.org/10.7554/eLife.68280