Back to Search Start Over

Effect of Wide-Spectrum Monochromatic Lights on Growth, Phytochemistry, Nutraceuticals, and Antioxidant Potential of In Vitro Callus Cultures of Moringa oleifera

Authors :
Muhammad Naeem Bajwa
Mehnaz Khanum
Gouhar Zaman
Muhammad Asad Ullah
Umar Farooq
Muhammad Waqas
Nisar Ahmad
Christophe Hano
Bilal Haider Abbasi
Source :
Molecules, Vol 28, Iss 3, p 1497 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Moringa oleifera, also called miracle tree, is a pharmaceutically important plant with a multitude of nutritional, medicinal, and therapeutic attributes. In the current study, an in-vitro-based elicitation approach was used to enhance the commercially viable bioactive compounds in an in vitro callus culture of M. oleifera. The callus culture was established and exposed to different monochromatic lights to assess the potentially interactive effects on biomass productions, biosynthesis of pharmaceutically valuable secondary metabolites, and antioxidant activity. Optimum biomass production (16.7 g/L dry weight), total phenolic contents (TPC: 18.03 mg/g), and flavonoid contents (TFC: 15.02 mg/g) were recorded in callus cultures placed under continuous white light (24 h), and of other light treatments. The highest antioxidant activity, i.e., ABTS (550.69 TEAC µM) and FRAP (365.37 TEAC µM), were also noted under white light (24 h). The analysis of phytochemicals confirmed the significant impact of white light exposures on the enhanced biosynthesis of plant secondary metabolites. The enhanced levels of secondary metabolites, i.e., kaempferol (1016.04 µg/g DW), neochlorogenic acid (998.38 µg/g DW), quercetin (959.92 µg/g DW), and minor compounds including luteolin, apigenin, and p-coumaric acid were observed as being highest in continuous white light (24 h with respect to the control (photoperiod). Similarly, blue light enhanced the chlorogenic acid accumulation. This study shows that differential spectral lights demonstrate a good approach for the enhancement of nutraceuticals along with novel pharmacologically important metabolites and antioxidants in the in vitro callus culture of M. oleifera.

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.639037b625144372a12d46894072102a
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules28031497