Back to Search Start Over

Targeting IL-33 reprograms the tumor microenvironment and potentiates antitumor response to anti-PD-L1 immunotherapy

Authors :
Yu Bai
Tao Wu
Jun Lin
Shuwen Xu
Xian Zeng
Xuyao Zhang
Jiajun Fan
Dianwen Ju
Mengyang Li
Yanyang Nan
Xiaozhi Hu
Kaicheng Zhou
An Zhu
Zihan Dou
Zhonglian Cao
Xumeng Zhang
Yuanzhen Zhang
Xuebin Wang
Source :
Journal for ImmunoTherapy of Cancer, Vol 12, Iss 9 (2024)
Publication Year :
2024
Publisher :
BMJ Publishing Group, 2024.

Abstract

Background The main challenge against patients with cancer to derive benefits from immune checkpoint inhibitors targeting PD-1/PD-L1 appears to be the immunosuppressive tumor microenvironment (TME), in which IL-33/ST2 signal fulfills critical functions. However, whether IL-33 limits the therapeutic efficacy of anti-PD-L1 remains uncertain.Methods Molecular mechanisms of IL-33/ST2 signal on anti-PD-L1 treatment lewis lung carcinoma tumor model were assessed by RNA-seq, ELISA, WB and immunofluorescence (IF). A sST2-Fc fusion protein was constructed for targeting IL-33 and combined with anti-PD-L1 antibody for immunotherapy in colon and lung tumor models. On this basis, bifunctional fusion proteins were generated for PD-L1-targeted blocking of IL-33 in tumors. The underlying mechanisms of dual targeting of IL-33 and PD-L1 revealed by RNA-seq, scRNA-seq, FACS, IF and WB.Results After anti-PD-L1 administration, tumor-infiltrating ST2+ regulatory T cells (Tregs) were elevated. Blocking IL-33/ST2 signal with sST2-Fc fusion protein potentiated antitumor efficacy of PD-L1 antibody by enhancing T cell responses in tumor models. Bifunctional fusion protein anti-PD-L1-sST2 exhibited enhanced antitumor efficacy compared with combination therapy, not only inhibited tumor progression and extended the survival, but also provided long-term protective antitumor immunity. Mechanistically, the superior antitumor activity of targeting IL-33 and PD-L1 originated from reducing immunosuppressive factors, such as Tregs and exhausted CD8+ T cells while increasing tumor-infiltrating cytotoxic T lymphocyte cells.Conclusions In this study, we demonstrated that IL-33/ST2 was involved in the immunosuppression mechanism of PD-L1 antibody therapy, and blockade by sST2-Fc or anti-PD-L1-sST2 could remodel the inflammatory TME and induce potent antitumor effect, highlighting the potential therapeutic strategies for the tumor treatment by simultaneously targeting IL-33 and PD-L1.

Details

Language :
English
ISSN :
20511426
Volume :
12
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Journal for ImmunoTherapy of Cancer
Publication Type :
Academic Journal
Accession number :
edsdoj.638af0fc590f47d4ba79bf0e0c80b015
Document Type :
article
Full Text :
https://doi.org/10.1136/jitc-2024-009236