Back to Search Start Over

Revealing the MRI‐Contrast in Optically Cleared Brains

Authors :
Shimrit Oz
Galit Saar
Shunit Olszakier
Ronit Heinrich
Mykhail O. Kompanets
Shai Berlin
Source :
Advanced Science, Vol 11, Iss 22, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract The current consensus holds that optically‐cleared specimens are unsuitable for Magnetic Resonance Imaging (MRI); exhibiting absence of contrast. Prior studies combined MRI with tissue‐clearing techniques relying on the latter's ability to eliminate lipids, thereby fostering the assumption that lipids constitute the primary source of ex vivo MRI‐contrast. Nevertheless, these findings contradict an extensive body of literature that underscores the contribution of other features to contrast. Furthermore, it remains unknown whether non‐delipidating clearing methods can produce MRI‐compatible specimens or whether MRI‐contrast can be re‐established. These limitations hinder the development of multimodal MRI‐light‐microscopy (LM) imaging approaches. This study assesses the relation between MRI‐contrast, and delipidation in optically‐cleared whole brains following different tissue‐clearing approaches. It is demonstrated that uDISCO and ECi‐brains are MRI‐compatible upon tissue rehydration, despite both methods’ substantial delipidating‐nature. It is also demonstrated that, whereas Scale‐clearing preserves most lipids, Scale‐cleared brain lack MRI‐contrast. Furthermore, MRI‐contrast is restored to lipid‐free CLARITY‐brains without introducing lipids. Our results thereby dissociate between the essentiality of lipids to MRI‐contrast. A tight association is found between tissue expansion, hyperhydration and loss of MRI‐contrast. These findings then enabled us to develop a multimodal MRI‐LM‐imaging approach, opening new avenues to bridge between the micro‐ and mesoscale for biomedical research and clinical applications.

Details

Language :
English
ISSN :
21983844 and 20240031
Volume :
11
Issue :
22
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.62924ac120374530b5e90dad5bf924af
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202400316