Back to Search Start Over

ALS spinal neurons show varied and reduced mtDNA gene copy numbers and increased mtDNA gene deletions

Authors :
Bennett James P
Keeney Paula M
Source :
Molecular Neurodegeneration, Vol 5, Iss 1, p 21 (2010)
Publication Year :
2010
Publisher :
BMC, 2010.

Abstract

Abstract Background Spinal cord neurons of ALS patients demonstrate reduced cytochrome oxidase histochemical activity, and ALS spinal cord tissues have increased mitochondrial DNA (mtDNA) point mutations and depleted mtDNA levels. It is presently unknown whether mtDNA abnormalities are present in single human ALS neurons. Results Using laser capture microdissection (LCM) we isolated several hundred individual anterior spinal neurons from unfixed, frozen sections of 10 ALS and 7 age-matched CTL cervical spinal cords. DNA from each individual neuron was analyzed with multiplex qPCR for ND2, CO3, and ND4, three mitochondrial DNA genes encoding respiratory proteins. Scatterplots of individual spinal neuron results showed extensive heterogeneity of mtDNA gene levels across 4-5 orders of magnitude that were much more clustered in single Purkinje neurons isolated from CTL cerebella. Plots of ratios of ND4/ND2 and CO3/ND2 showed that many but not all ALS neurons from individuals contained low ratios of these mtDNA genes, implying greater abundances of mtDNA deletions in the major arc. Single CTL cerebellar Purkinje neurons did not contain high levels of apparent mtDNA deletions observed in anterior spinal neurons. Conclusions At the time of ALS subjects' deaths, many but not all surviving anterior neurons in their cervical spinal cords have reduced mtDNA gene levels and increased mtDNA deletion abundances that arise for unclear reasons. If these anterior spinal neuron mtDNA gene deficiencies contribute to bioenergetic impairments, reduced synaptic function and increased risk of degeneration, then introduction into mitochondria and expression of intact mtDNA, now available through use of recently developed recombinant human TFAM, may reverse the course of ALS.

Details

Language :
English
ISSN :
17501326
Volume :
5
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Molecular Neurodegeneration
Publication Type :
Academic Journal
Accession number :
edsdoj.627fbaeba6a44313a42f142254d4f918
Document Type :
article
Full Text :
https://doi.org/10.1186/1750-1326-5-21