Back to Search
Start Over
Spatial Prediction of Fluvial Flood in High-Frequency Tropical Cyclone Area Using TensorFlow 1D-Convolution Neural Networks and Geospatial Data
- Source :
- Remote Sensing, Vol 15, Iss 22, p 5429 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Fluvial floods endure as one of the most catastrophic weather-induced disasters worldwide, leading to numerous fatalities each year and significantly impacting socio-economic development and the environment. Hence, the research and development of new methods and algorithms focused on improving fluvial flood prediction and devising robust flood management strategies are essential. This study explores and assesses the potential application of 1D-Convolution Neural Networks (1D-CNN) for spatial prediction of fluvial flood in the Quang Nam province, a high-frequency tropical cyclone area in central Vietnam. To this end, a geospatial database with 4156 fluvial flood locations and 12 flood indicators was considered. The ADAM algorithm and the MSE loss function were used to train the 1D-CNN model, whereas popular performance metrics, such as Accuracy (Acc), Kappa, and AUC, were used to measure the performance. The results indicated remarkable performance by the 1D-CNN model, achieving high prediction accuracy with metrics such as Acc = 90.7%, Kappa = 0.814, and AUC = 0.963. Notably, the proposed 1D-CNN model outperformed benchmark models, including DeepNN, SVM, and LR. This achievement underscores the promise and innovation brought by 1D-CNN in the realm of susceptibility mapping for fluvial floods.
- Subjects :
- fluvial flood
1D-CNN
deep neural networks
geospatial data
tropical areas
Science
Subjects
Details
- Language :
- English
- ISSN :
- 15225429 and 20724292
- Volume :
- 15
- Issue :
- 22
- Database :
- Directory of Open Access Journals
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.626ca2d2e14844dd96edb5496ee1b4b8
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/rs15225429