Back to Search Start Over

Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis.

Authors :
Hao-Xin Zhou
Bing Han
Li-Min Hou
Ting-Ting An
Guang Jia
Zhuo-Xin Cheng
Yong Ma
Yi-Nan Zhou
Rui Kong
Shuang-Jia Wang
Yong-Wei Wang
Xue-Jun Sun
Shang-Ha Pan
Bei Sun
Source :
PLoS ONE, Vol 11, Iss 4, p e0154483 (2016)
Publication Year :
2016
Publisher :
Public Library of Science (PLoS), 2016.

Abstract

Acute pancreatitis (AP) is an inflammatory disease mediated by damage to acinar cells and pancreatic inflammation. In patients with AP, subsequent systemic inflammatory responses and multiple organs dysfunction commonly occur. Interactions between cytokines and oxidative stress greatly contribute to the amplification of uncontrolled inflammatory responses. Molecular hydrogen (H2) is a potent free radical scavenger that not only ameliorates oxidative stress but also lowers cytokine levels. The aim of the present study was to investigate the protective effects of H2 gas on AP both in vitro and in vivo. For the in vitro assessment, AR42J cells were treated with cerulein and then incubated in H2-rich or normal medium for 24 h, and for the in vivo experiment, AP was induced through a retrograde infusion of 5% sodium taurocholate into the pancreatobiliary duct (0.1 mL/100 g body weight). Wistar rats were treated with inhaled air or 2% H2 gas and sacrificed 12 h following the induction of pancreatitis. Specimens were collected and processed to measure the amylase and lipase activity levels; the myeloperoxidase activity and production levels; the cytokine mRNA expression levels; the 8-hydroxydeoxyguanosine, malondialdehyde, and glutathione levels; and the cell survival rate. Histological examinations and immunohistochemical analyses were then conducted. The results revealed significant reductions in inflammation and oxidative stress both in vitro and in vivo. Furthermore, the beneficial effects of H2 gas were associated with reductions in AR42J cell and pancreatic tissue damage. In conclusion, our results suggest that H2 gas is capable of ameliorating damage to the pancreas and AR42J cells and that H2 exerts protective effects both in vitro and in vivo on subjects with AP. Thus, the results obtained indicate that this gas may represent a novel therapy agent in the management of AP.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
4
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.6264ff9ba68a427ab55e0300590a2033
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0154483