Back to Search Start Over

Predicting Three-Dimensional Ground Reaction Forces in Running by Using Artificial Neural Networks and Lower Body Kinematics

Authors :
Dimitrios-Sokratis Komaris
Eduardo Perez-Valero
Luke Jordan
John Barton
Liam Hennessy
Brendan O'Flynn
Salvatore Tedesco
Source :
IEEE Access, Vol 7, Pp 156779-156786 (2019)
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

This study explored the use of artificial neural networks in the estimation of runners' kinetics from lower body kinematics. Three supervised feed-forward artificial neural networks with one hidden layer each were modelled and assigned individually with the mapping of a single force component. Number of training epochs, batch size and dropout rate were treated as modelling hyper-parameters and their values were optimised with a grid search. A public data set of twenty-eight professional athletes containing running trails of different speeds (2.5 m/sec, 3.5 m/sec and 4.5 m/sec) was employed to train and validate the networks. Movements of the lower limbs were captured with twelve motion capture cameras and an instrumented dual-belt treadmill. The acceleration of the shanks was fed to the artificial neural networks and the estimated forces were compared to the kinetic recordings of the instrumented treadmill. Root mean square error was used to evaluate the performance of the models. Predictions were accompanied with low errors: 0.134 BW for the vertical, 0.041 BW for the anteroposterior and 0.042 BW for the mediolateral component of the force. Vertical and anteroposterior estimates were independent of running speed (p=0.233 and p=.058, respectively), while mediolateral results were significantly more accurate for low running speeds (p=0.010). The maximum force mean error between measured and estimated values was found during the vertical active peak (0.114 ± 0.088 BW). Findings indicate that artificial neural networks in conjunction with accelerometry may be used to compute three-dimensional ground reaction forces in running.

Details

Language :
English
ISSN :
21693536
Volume :
7
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.6261c1dccea14187a5142ab5a9348148
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2019.2949699