Back to Search Start Over

Novel CNN Integration with Pre-Trained model for Enhanced Plant Disease Detection

Authors :
Saluja Rishabh
Shukla Mahima
Kaur Gursimran
Rana Pooja
Source :
E3S Web of Conferences, Vol 556, p 01005 (2024)
Publication Year :
2024
Publisher :
EDP Sciences, 2024.

Abstract

Agriculture is one of the major aspects of national development, yet plant diseases present a significant threat to agricultural production. In order to reduce associated losses and mitigate this threat, plant disease identification in early stages is very essential. Deep learning emerged as a significant advancement in the effective detection of various plant diseases as it can visualize and categorize the symptoms from the leaves of the plants This study examines the state-of-the-art deep learning methods for leafbased plant disease detection, with a particular emphasis on Convolutional Neural Networks (CNNs), Transfer Learning, and Ensemble Learning. In addition, a novel ensemble architecture is proposed, which combines a customized CNN architecture and a pretrained model called GoogLeNet. This proposed architecture can detect ten of the most prevalent plant diseases from the PlantVillage dataset, including tomato, apple, bell pepper, and potato. The suggested ensemble architecture achieves an astonishing 99.07% accuracy, demonstrating its potential to enhance plant disease diagnostics and promote sustainable agriculture

Details

Language :
English, French
ISSN :
22671242
Volume :
556
Database :
Directory of Open Access Journals
Journal :
E3S Web of Conferences
Publication Type :
Academic Journal
Accession number :
edsdoj.62567d9d49bb4c86906469051968286e
Document Type :
article
Full Text :
https://doi.org/10.1051/e3sconf/202455601005