Back to Search Start Over

Colossal Dielectric Perovskites of Calcium Copper Titanate (CaCu3Ti4O12) with Low‐Iridium Dopants Enables Ultrahigh Mass Activity for the Acidic Oxygen Evolution Reaction

Authors :
Nguyen Thi Thu Thao
Kwangsoo Kim
Jeong Ho Ryu
Byeong‐Seon An
Arpan Kumar Nayak
Jin Uk Jang
Kyeong‐Han Na
Won‐Youl Choi
Ghulam Ali
Keun Hwa Chae
Muhammad Akbar
Kyung Yoon Chung
Hyun‐Seok Cho
Jong Hyeok Park
Byung‐Hyun Kim
HyukSu Han
Source :
Advanced Science, Vol 10, Iss 16, Pp n/a-n/a (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract Oxygen evolution reaction (OER) under acidic conditions becomes of significant importance for the practical use of a proton exchange membrane (PEM) water electrolyzer. In particular, maximizing the mass activity of iridium (Ir) is one of the maiden issues. Herein, the authors discover that the Ir‐doped calcium copper titanate (CaCu₃Ti₄O₁₂, CCTO) perovskite exhibits ultrahigh mass activity up to 1000 A gIr−1 for the acidic OER, which is 66 times higher than that of the benchmark catalyst, IrO2. By substituting Ti with Ir in CCTO, metal‐oxygen (M‐O) covalency can be significantly increased leading to the reduced energy barrier for charge transfer. Further, highly polarizable CCTO perovskite referred to as “colossal dielectric”, possesses low defect formation energy for oxygen vacancy inducing a high number of oxygen vacancies in Ir‐doped CCTO (Ir‐CCTO). Electron transfer occurs from the oxygen vacancies and Ti to the substituted Ir consequentially resulting in the electron‐rich Ir and ‐deficient Ti sites. Thus, favorable adsorptions of oxygen intermediates can take place at Ti sites while the Ir ensures efficient charge supplies during OER, taking a top position of the volcano plot. Simultaneously, the introduced Ir dopants form nanoclusters at the surface of Ir‐CCTO, which can boost catalytic activity for the acidic OER.

Details

Language :
English
ISSN :
21983844
Volume :
10
Issue :
16
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.61f10334546aa95e9cda1a7ebde
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202207695