Back to Search
Start Over
On L 2 $L^{2}$ -boundedness of Fourier integral operators
- Source :
- Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-10 (2020)
- Publication Year :
- 2020
- Publisher :
- SpringerOpen, 2020.
-
Abstract
- Abstract Let T a , φ $T_{a,\varphi }$ be a Fourier integral operator with symbol a and phase φ. In this paper, under the conditions a ( x , ξ ) ∈ L ∞ S ρ n ( ρ − 1 ) / 2 ( ω ) $a(x,\xi )\in L^{\infty }S^{n(\rho -1)/2}_{\rho }(\omega )$ and φ ∈ L ∞ Φ 2 $\varphi \in L^{\infty }\varPhi ^{2}$ , the authors show that T a , φ $T_{a,\varphi }$ is bounded from L 2 ( R n ) $L^{2}(\mathbb{R}^{n})$ to L 2 ( R n ) $L^{2}(\mathbb{R}^{n})$ .
Details
- Language :
- English
- ISSN :
- 1029242X
- Volume :
- 2020
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Inequalities and Applications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.61ea88f1029047ff97beda4df81c1b4f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13660-020-02439-0