Back to Search Start Over

On L 2 $L^{2}$ -boundedness of Fourier integral operators

Authors :
Jie Yang
Wenyi Chen
Jiang Zhou
Source :
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-10 (2020)
Publication Year :
2020
Publisher :
SpringerOpen, 2020.

Abstract

Abstract Let T a , φ $T_{a,\varphi }$ be a Fourier integral operator with symbol a and phase φ. In this paper, under the conditions a ( x , ξ ) ∈ L ∞ S ρ n ( ρ − 1 ) / 2 ( ω ) $a(x,\xi )\in L^{\infty }S^{n(\rho -1)/2}_{\rho }(\omega )$ and φ ∈ L ∞ Φ 2 $\varphi \in L^{\infty }\varPhi ^{2}$ , the authors show that T a , φ $T_{a,\varphi }$ is bounded from L 2 ( R n ) $L^{2}(\mathbb{R}^{n})$ to L 2 ( R n ) $L^{2}(\mathbb{R}^{n})$ .

Details

Language :
English
ISSN :
1029242X
Volume :
2020
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Inequalities and Applications
Publication Type :
Academic Journal
Accession number :
edsdoj.61ea88f1029047ff97beda4df81c1b4f
Document Type :
article
Full Text :
https://doi.org/10.1186/s13660-020-02439-0