Back to Search Start Over

Functional MRI activation of the nucleus tractus solitarius after taste stimuli at ultra-high field: a proof-of-concept single-subject study

Authors :
Antonietta Canna
Elena Cantone
Anne Roefs
Sieske Franssen
Anna Prinster
Elia Formisano
Francesco Di Salle
Fabrizio Esposito
Source :
Frontiers in Nutrition, Vol 10 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

Using ultra-high field (7 Tesla) functional MRI (fMRI), we conducted the first in-vivo functional neuroimaging study of the normal human brainstem specifically designed to examine neural signals in the Nucleus Tractus Solitarius (NTS) in response to all basic taste stimuli. NTS represents the first relay station along the mammalian taste processing pathway which originates at the taste buds in the oral cavity and passes through the thalamus before reaching the primary taste cortex in the brain. In our proof-of-concept study, we acquired data from one adult volunteer using fMRI at 1.2 mm isotropic resolution and performed a univariate general linear model analysis. During fMRI acquisition, three shuffled injections of sweet, bitter, salty, sour, and umami solutions were administered following an event-related design. We observed a statistically significant blood oxygen level-dependent (BOLD) response in the anatomically predicted location of the NTS for all five basic tastes. The results of this study appear statistically robust, even though they were obtained from a single volunteer. The information derived from a similar experimental strategy may inspire novel research aimed at clarifying important details of central nervous system involvement in eating disorders, at designing and monitoring tailored therapeutic strategies.

Details

Language :
English
ISSN :
2296861X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Nutrition
Publication Type :
Academic Journal
Accession number :
edsdoj.619ba8f611c640109355571f3556e1d3
Document Type :
article
Full Text :
https://doi.org/10.3389/fnut.2023.1173316