Back to Search
Start Over
EtHgSC: Eigen Trick-Based Hypergraph Stable Clustering Algorithm in VANET
- Source :
- Journal of Electrical and Computer Engineering, Vol 2023 (2023)
- Publication Year :
- 2023
- Publisher :
- Hindawi Limited, 2023.
-
Abstract
- A smart city’s vehicular communication strategy is important. A significant problem with vehicular communication is scalability. Clustering can help with vehicular ad hoc network (VANET) problems; however, clustering in VANET faces stability problems because of the rapid mobility of the vehicles. To achieve high stability for the VANET, this paper presents a new efficient Eigen-trick-based hypergraph stable clustering algorithm (EtHgSC). This algorithm has a twofold scheme for stable CH selection. In the first part of the proposed scheme, the cluster generation is handled using an improved hypergraph-based spectral clustering algorithm using the Eigen-trick method. The “Eigen-trick” method is used to partition both vertices and hyperedges, which provides an approach for reducing the computational complexity of the clustering. The cluster head (CH) is chosen in the second part, taking into account the requirements for keeping a stable connection with most neighbors. In addition to relative speed, neighboring degree, and eccentricity that are used to select the CH, the vehicle time to leave metric is introduced to increase the CH stability. The grey relational analysis model is used to find each vehicle’s score, and the CH is selected based on the maximum vehicle’s score. The results show the supremacy of our proposed scheme in terms of CH lifetime, cluster member (CM) lifetime, and the change rate of CH. Also, the proposed scheme achieves a considerable reduction in terms of packet delay.
- Subjects :
- Computer engineering. Computer hardware
TK7885-7895
Subjects
Details
- Language :
- English
- ISSN :
- 20900155
- Volume :
- 2023
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Electrical and Computer Engineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.618ac62786324ffa9acff01b6d00425a
- Document Type :
- article
- Full Text :
- https://doi.org/10.1155/2023/6327247