Back to Search Start Over

Effect of Ca(OH)2 Addition on the Engineering Properties of Sodium Sulfate Activated Slag

Authors :
Xiaodi Dai
Serdar Aydın
Mert Yücel Yardımcı
Karel Lesage
Geert De Schutter
Source :
Materials, Vol 14, Iss 15, p 4266 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Alkali-activated slag is considered as a sustainable construction material due to its environmentally friendly nature. To further promote the sustainable nature of alkali-activated slag, a sodium sulfate activator is suggested to be used since it can be obtained naturally and generates lower greenhouse gas emissions. However, the mixtures activated by sodium sulfate exhibit low early strength and very long setting times. This study investigates the effects of calcium hydroxide (Ca(OH)2) addition on some engineering properties such as rheology, setting time, mechanical properties, porosity, and microstructure of sodium sulfate activated ground granulated blast furnace slag (GGBFS). Furthermore, the changes of chemical groups in reaction products and phase identification have been evaluated by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. Test results showed that Ca(OH)2 addition can substantially increase the reaction rate and the compressive strength at early ages. In addition, the very long setting times of the sodium sulfate-activated mixtures were shortened by the addition of Ca(OH)2. SEM analysis confirmed that the incorporation of excessive amounts of Ca(OH)2 could lead to a less well-packed microstructure although the reaction degree of GGBFS remained the same at later ages as compared to the sodium sulfate mixture. It was also revealed that in case of the Ca(OH)2 addition into sodium sulfate activator, the main reaction products are chain-structured C-A-S-H gels and ettringite.

Details

Language :
English
ISSN :
19961944
Volume :
14
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.618679dbef4c2ca210dcd446a1315e
Document Type :
article
Full Text :
https://doi.org/10.3390/ma14154266