Back to Search
Start Over
Potential Natural Products Regulation of Molecular Signaling Pathway in Dermal Papilla Stem Cells
- Source :
- Molecules, Vol 28, Iss 14, p 5517 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Stem cells have demonstrated significant potential for tissue engineering and repair, anti-aging, and rejuvenation. Hair follicle stem cells can be found in the dermal papilla at the base of the follicle and the bulge region, and they have garnered increased attention because of their potential to regenerate hair as well as their application for tissue repair. In recent years, these cells have been shown to affect hair restoration and prevent hair loss. These stem cells are endowed with mesenchymal characteristics and exhibit self-renewal and can differentiate into diverse cell types. As research in this field continues, it is probable that insights regarding stem cell maintenance, as well as their self-renewal and differentiation abilities, will benefit the application of these cells. In addition, an in-depth discussion is required regarding the molecular basis of cellular signaling and the influence of nature-derived compounds in stimulating the stemness properties of dermal papilla stem cells. This review summarizes (i) the potential of the mesenchymal cells component of the hair follicle as a target for drug action; (ii) the molecular mechanism of dermal papilla stem cells for maintenance of their stem cell function; and (iii) the positive effects of the natural product compounds in stimulating stemness in dermal papilla stem cells. Together, these insights may help facilitate the development of novel effective hair loss prevention and treatment.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 28
- Issue :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.615a1a90e8943b8b9efd88cc1585e1f
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules28145517