Back to Search Start Over

A generalizable and easy-to-use COVID-19 stratification model for the next pandemic via immune-phenotyping and machine learning

Authors :
Xinlei He
Xiao Cui
Zhiling Zhao
Rui Wu
Qiang Zhang
Lei Xue
Hua Zhang
Qinggang Ge
Yuxin Leng
Source :
Frontiers in Immunology, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

IntroductionThe coronavirus disease 2019 (COVID-19) pandemic has affected billions of people worldwide, and the lessons learned need to be concluded to get better prepared for the next pandemic. Early identification of high-risk patients is important for appropriate treatment and distribution of medical resources. A generalizable and easy-to-use COVID-19 severity stratification model is vital and may provide references for clinicians.MethodsThree COVID-19 cohorts (one discovery cohort and two validation cohorts) were included. Longitudinal peripheral blood mononuclear cells were collected from the discovery cohort (n = 39, mild = 15, critical = 24). The immune characteristics of COVID-19 and critical COVID-19 were analyzed by comparison with those of healthy volunteers (n = 16) and patients with mild COVID-19 using mass cytometry by time of flight (CyTOF). Subsequently, machine learning models were developed based on immune signatures and the most valuable laboratory parameters that performed well in distinguishing mild from critical cases. Finally, single-cell RNA sequencing data from a published study (n = 43) and electronic health records from a prospective cohort study (n = 840) were used to verify the role of crucial clinical laboratory and immune signature parameters in the stratification of COVID-19 severity.ResultsPatients with COVID-19 were determined with disturbed glucose and tryptophan metabolism in two major innate immune clusters. Critical patients were further characterized by significant depletion of classical dendritic cells (cDCs), regulatory T cells (Tregs), and CD4+ central memory T cells (Tcm), along with increased systemic interleukin-6 (IL-6), interleukin-12 (IL-12), and lactate dehydrogenase (LDH). The machine learning models based on the level of cDCs and LDH showed great potential for predicting critical cases. The model performances in severity stratification were validated in two cohorts (AUC = 0.77 and 0.88, respectively) infected with different strains in different periods. The reference limits of cDCs and LDH as biomarkers for predicting critical COVID-19 were 1.2% and 270.5 U/L, respectively.ConclusionOverall, we developed and validated a generalizable and easy-to-use COVID-19 severity stratification model using machine learning algorithms. The level of cDCs and LDH will assist clinicians in making quick decisions during future pandemics.

Details

Language :
English
ISSN :
16643224
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Immunology
Publication Type :
Academic Journal
Accession number :
edsdoj.613922f7bfc444b942c3e82efcdbe51
Document Type :
article
Full Text :
https://doi.org/10.3389/fimmu.2024.1372539