Back to Search Start Over

A SLR on Customer Dropout Prediction

Authors :
Pedro Sobreiro
Domingos Dos Santos Martinho
Jose G. Alonso
Javier Berrocal
Source :
IEEE Access, Vol 10, Pp 14529-14547 (2022)
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

Dropout prediction is a problem that is being addressed with machine learning algorithms; thus, appropriate approaches to address the dropout rate are needed. The selection of an algorithm to predict the dropout rate is only one problem to be addressed. Other aspects should also be considered, such as which features should be selected and how to measure accuracy while considering whether the features are appropriate according to the business context in which they are employed. To solve these questions, the goal of this paper is to develop a systematic literature review to evaluate the development of existing studies and to predict the dropout rate in contractual settings using machine learning to identify current trends and research opportunities. The results of this study identify trends in the use of machine learning algorithms in different business areas and in the adoption of machine learning algorithms, including which metrics are being adopted and what features are being applied. Finally, some research opportunities and gaps that could be explored in future research are presented.

Details

Language :
English
ISSN :
21693536
Volume :
10
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.60edcbebe02e452baaa9e255571eec53
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2022.3146397