Back to Search
Start Over
Continuity Equation of Transverse Kähler Metrics on Sasakian Manifolds
- Source :
- Mathematics, Vol 12, Iss 19, p 3132 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- We introduce the continuity equation of transverse Kähler metrics on Sasakian manifolds and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative), we prove that the solution of the (resp. normalized) continuity equation converges smoothly to the unique η-Einstein metric in the basic Bott–Chern cohomological class of the initial transverse Kähler metric (resp. first basic Chern class). These results are the transverse version of the continuity equation of the Kähler metrics studied by La Nave and Tian, and also counterparts of the Sasaki–Ricci flow studied by Smoczyk, Wang, and Zhang.
Details
- Language :
- English
- ISSN :
- 22277390
- Volume :
- 12
- Issue :
- 19
- Database :
- Directory of Open Access Journals
- Journal :
- Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.60cacb1fc26744338b256278f4cc66e1
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/math12193132