Back to Search Start Over

Conductive adhesive with transient liquid‐phase sintering technology for high‐power device applications

Authors :
Yong‐Sung Eom
Keon‐Soo Jang
Ji‐Hye Son
Hyun‐Cheol Bae
Kwang‐Seong Choi
Source :
ETRI Journal, Vol 41, Iss 6, Pp 820-828 (2019)
Publication Year :
2019
Publisher :
Electronics and Telecommunications Research Institute (ETRI), 2019.

Abstract

A highly reliable conductive adhesive obtained by transient liquid‐phase sintering (TLPS) technologies is studied for use in high‐power device packaging. TLPS involves the low‐temperature reaction of a low‐melting metal or alloy with a high‐melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag‐coated Cu, a Sn96.5‐Ag3.0‐Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 °C, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

Details

Language :
English
ISSN :
12256463
Volume :
41
Issue :
6
Database :
Directory of Open Access Journals
Journal :
ETRI Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.605d4511fb2f46ffba5dc08bbad6bfd5
Document Type :
article
Full Text :
https://doi.org/10.4218/etrij.2018-0250