Back to Search Start Over

Retrosynthesis prediction with an iterative string editing model

Authors :
Yuqiang Han
Xiaoyang Xu
Chang-Yu Hsieh
Keyan Ding
Hongxia Xu
Renjun Xu
Tingjun Hou
Qiang Zhang
Huajun Chen
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-16 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Retrosynthesis is a crucial task in drug discovery and organic synthesis, where artificial intelligence (AI) is increasingly employed to expedite the process. However, existing approaches employ token-by-token decoding methods to translate target molecule strings into corresponding precursors, exhibiting unsatisfactory performance and limited diversity. As chemical reactions typically induce local molecular changes, reactants and products often overlap significantly. Inspired by this fact, we propose reframing single-step retrosynthesis prediction as a molecular string editing task, iteratively refining target molecule strings to generate precursor compounds. Our proposed approach involves a fragment-based generative editing model that uses explicit sequence editing operations. Additionally, we design an inference module with reposition sampling and sequence augmentation to enhance both prediction accuracy and diversity. Extensive experiments demonstrate that our model generates high-quality and diverse results, achieving superior performance with a promising top-1 accuracy of 60.8% on the standard benchmark dataset USPTO-50 K.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.602696f31ed34e63aeb3508f048a44a9
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50617-1