Back to Search
Start Over
Analysis of bulletproof performance of structurally optimized ceramic composite armor through numerical simulation and live fire test
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-11 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced ​​bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint areas. These structurally optimized composite pads are examined by numerical simulation of impact dynamics to understand their anti-penetration performance whose accuracy is then validated by live fire tests. The results reveal that (1) the ceramic plates with improved edge design enhance the anti-penetration efficiency, (2) the established dynamic constitutive model of penetration resistance effectively predicts the ballistic performance of the armor pad, and (3) inability to penetrate high-speed real bullets through the armor suggests that the ballistic performance fully meets the protection requirements of the MIL-A-46103EIII Class 2 A standard. In this regard, structural regulation of the shape of the ceramic-based composite plates allows for the design of lightweight armor with improved bulletproof capability.
- Subjects :
- Ceramic plate
Bulletproof
Splice
Stagger
Joint
Medicine
Science
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5ff41d9ef8a7438f9231a9c21dc952c7
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-80752-0