Back to Search Start Over

Real-time machine learning model to predict in-hospital cardiac arrest using heart rate variability in ICU

Authors :
Hyeonhoon Lee
Hyun-Lim Yang
Ho Geol Ryu
Chul-Woo Jung
Youn Joung Cho
Soo Bin Yoon
Hyun-Kyu Yoon
Hyung-Chul Lee
Source :
npj Digital Medicine, Vol 6, Iss 1, Pp 1-10 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Predicting in-hospital cardiac arrest in patients admitted to an intensive care unit (ICU) allows prompt interventions to improve patient outcomes. We developed and validated a machine learning-based real-time model for in-hospital cardiac arrest predictions using electrocardiogram (ECG)-based heart rate variability (HRV) measures. The HRV measures, including time/frequency domains and nonlinear measures, were calculated from 5 min epochs of ECG signals from ICU patients. A light gradient boosting machine (LGBM) algorithm was used to develop the proposed model for predicting in-hospital cardiac arrest within 0.5–24 h. The LGBM model using 33 HRV measures achieved an area under the receiver operating characteristic curve of 0.881 (95% CI: 0.875–0.887) and an area under the precision-recall curve of 0.104 (95% CI: 0.093–0.116). The most important feature was the baseline width of the triangular interpolation of the RR interval histogram. As our model uses only ECG data, it can be easily applied in clinical practice.

Details

Language :
English
ISSN :
23986352
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Digital Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.5fefbcff5c4e439892c05e23da4dfc15
Document Type :
article
Full Text :
https://doi.org/10.1038/s41746-023-00960-2